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noise in the time-continuous case using a white noise approach.

Likelihood Ratios for Time-Continuous

Data Models: The Vhnite Néiss. Approach

A. V. Balakrishnan

System Science Department
University of California

Abstract We develop a formula for likelihood functionals for sign'als in édditiva

It is shosm that '

‘the formula differs from the well-known formula in the Wiener proceés version.by thé

' appearance of an additional term correspanding to the conditional mean squa:;e.

filteping error.

1. Ix;ttr,odhction. In much .of engineering literature on idéntific:aition (too
voluminous to be referred to individually. See the 'severelil volunes of ﬁrﬁceedings
of IFAC Symposia on Systern Identificétion and Parameter Estimation, 1'970, 1973 and
1976) it is custon‘aty to consider the observed data as sampled periodically in time
-- even when the basie phenonena are modelled by time-continuous differential
equations. " The usual ’hand—wavmg argurant is then nada that the 'lmtmcr'

contmuou;-t1me case is no more than a ma-_hem..mal data:u., and that anyhow in

digital camputer processing, conversion to sanpled data is a basic step. This is

indeed true; but the authors almost invariably proceed to use the model:

Va5t
where {S } is the information-bearing time series and {u! } the observation noise

semes, and (this is the crucial point) take (N } as a sequence of J.ndcpend_nt

variables. But this mciu:‘mes that the sampling rate be not more than twice the

noise bandwidth, itself unknown. Of course, to answer thJ.s objection, one can allow

(N } to be correlated; but then the correlation ﬁmctlon must be known. Now it is ven




".. unru:'_vl'istic to require the correlation function of instr-uxwant noise; and evan vhen
knoem, it adds a lot to the complication but little to the perforfur*nce. Ue rain-
tain that it is much better‘. to use a time-continuous modal

YO = S(6) + N | | 2)
and allow the sempling rate to be as high as t‘r:.-: A-D convarter wants to use. But
in the time-continuous model we are faced with another problem; the basic tool in
identification is the likelihood rafio (for fixaed f»aramaters): the Rado.n—Nikodym
. derivative of the pmbabi.lify measure induced by fhe process y(+) to that induced
by- N(-). But this likelihood ratio is difficult to ﬁuplemz:nt even vhen the spectrum
of N(-) .Ls kncwn, wimidm-it is not. What we can say for sure is that f’n\e Sand,ridti—x |
A of the (insffwr.ent) noise is large compared with t.’natio-f the émcess S('). At this
point' the earlier engineering literature used tﬁe notion of "white noise” a process
with constant spectral density over all freguancies in a formal way. In fhe sixties

it became fashionable to replace this by the "Wiener process” model as "more

rigorous”". Thus ;:e replace (2) by -
< o B -
¥(t) = .{ Sta)ds  + W(t) S
where W(t) is a Wiener process Ve have then, to be sure, the advmtage of the
povﬁvful machinery of Mart’ingales and Tto integfais. In fact the likelihood
functional (for the case where signal and noise are indapéndent @ich w2 assum2

thruout) can then be written down as: [see [1]]:
T ~T
o - 17 118w e - 2 _[ 5oy, arcn)] W)
0

A : ‘
vhere S(t) is the best mean square estimate of S(t) given the observaticn Y(s) upto

time t. But the hooker is that the second termm is an Ito integral:

s

R
[S(t), dy(t)]




o

~

'l'riis integ't‘allis defirigd on the basis that Y(t) is of unbounded variation with’
probability onz. On the other hand no physical instrurant can produce such a vave
form! Indeed, we must now go back to (2) where it cama from and thus r‘eplace.

‘ dy(t) by y(t)dt | |
’1‘hls is al_l I‘l‘,ht if S(t) is dﬂternlnlstlc if not, we no longer obtain the value

pnescr'.Lbed by the Ito form.:la! In particular, any d.gom.thm based on it leads to

" erroneous .n.esults. Pfgst au'thbr-s of papers on the s,ubJect probably have never

bothered to éalculate anything based on actual déta; andv of course in any digital

compufer' sumlatlcn it is pOSSlble to mask this completely. Indeéd, almost all

smu_a.tlon models erploy the dlscrete version (l)

. Faced with thx.s dJ_fflculty we have to exzmine more pmcxsely the model apa._n.

Tnus what we want to exploit is the fact that the bandwidth of the noise is large

cormpared to that of the process S(+). Hence what is really needed is ‘he

'asymptotic form' of the likelihood functionzl as the bandwidth goes to infinity

in an arbitrery manner.
Such a theory has been developad by the author using a precise notion of

white noise. See [ 2] for details. We take the 'sample points' to be in a Hilbert

Space with Gauss measure theorem. Thus in (2) we consider N(t) 0 < t < T as path-

| e
¥,

wise square integrable in [0,T]; as elements in the L,-space -L2(Rn; (0,T)), (the
observation having its range in F}l, n-dimensional Euclidean Space). Corresponding
to white noise with 'unit' spectral density, we define the Gauss measure by:

T a
i fo [NCt), h(t)Idt T :
Ele )= EBxp - 1/2 f (h(t), hlt)1dt
0

for each h(-) in x"2[Rn; (O;T)], defining thus the characteristic function of the

Gauss measure, : . P




The difference bctween this set-up and the WLt_n"FPm ss set-up is simply

this. lLet {¢ ()} dﬂnote a conplete orthornormal system in L, [R (0,T)]. Tnen
i
R [¢n(t), N(-t)]dt =g

yield a sequance of zero-mean, unit varience Caussians. The sample-space for the
sequance is £2, since
. T =
@
R f Nkt <o
G O g
. On the other hand, glven such a sequ_.nce it is standard practlce to take R as the

sample space end via the Kolrrogorov theory, construct a comtably add:.tvve measure

_on the Borel sets of K. [This is also the countably additive extension to Nuclear

Spaces via the Minlos theorem]. This is in fact the Wiener process theory, in which
of course, all of £2 has zero reasure, Both szt ups of course agree on the measures
of cylindar sets. What is rendered difficult by using 12 as the sample space is tha

notion of a random variable. Whereas this is trivial in the R model —- ény Borel-

measurable function being a random variable -- it is the central issue in the L,

set-up. In other words, given any functional f(-) on L2[Rn; 0,7)], even

" continuous thereon, it need not define a randem varisble. Ws define it as a random

. variable if and only if for any sequence Pn of finite dimensional projections
converging strongly to the idantity, the seﬁuance. {f(Pn(-)} is Cauchy in

. probability, and all such sequences are equivalent. Thus we have a smaller class

of random variables; the implication being that the Ito integr‘als in the Wienar

process theory may not correspond to random-varisbles on £2. Moreover the *limiting"

]

notion comespbnds to the .'bancbridth expanding' notion.




i 2. leehhood Ratio: White Noise Theory,

let us now examine likelihood ratios (Radon Nikc')dym derivatives) in termms of
the white noise theory. let

Lyt = s + NCE) 0<t<T<w 7 (2.1
vhere S(-) and N(-) are indepandent processes. We shall assume that the signal

S(-) has finite energy:

. T ." .- > : ; £ .. - : -
' f Bllso]Da < % (2.2)

"vForeacht 0<t<T, let

W(t) L, [R ; €0 t)J
We shall shorten W(T) to s:.rply W. Under cond_tlon (2 2), the process S(C*) :Lnducea
a cou:xtably additivie measure on W (and henc= on W(t) fov' each t)-.. [The cy_mdnr :

measure on W can be extendnd to be countably add_tlve in other words this is a

consequence of the Sazonov theorem, see [ 2]]. Thus (2.1) defines a weak

distribution on W defined by the characteristic function:

e - B - w2 [R]P . TR X

where

.

"cs(h) peilSsnly e (2.4)

where we have used the inner-product notation:
” . e :
{s,h] =f {S(t), h(t)]dt, h = W,
0 - - -
Then the cylinder measure uy induced by y(.) is absolutely continuous with respect

to Gauss measure g and the Radon-Nikodym derivative is defined by the function:

£(w) =f Exp - 1/2 {||sl|2 -2 [s;mﬁ},ﬁus . £2.,8)
W g . . e ." . i .\ R




i Thus for any cylinder set C,

uy(C) = limit [ f(in) d;JC

n> o , &
where Pn is any sequance of finite dimensional projections strongly convergent to
the identity. This result has been proved in [ 3].
let {¢n} be an orthonogeal basis in W and let L denote the mapping of ¥ into

- Lx =aja = v/; [x(o),_cbn(o)]dc.

Let

IS=¢g

- Let M denote the measure induced on 22 by this mapping. Then we can resrite (2.5)

in the form

£ = [ B - 1/2 {Le,e) - 2 [g, 1) e ' (2.6
; ' ¢
It must be er.phasiséd that (2.6) is defined for every element w in W. Note also that
(2.6) can be defined with respect to any ortt onorme) system {¢n}._

The likelihood functional f(y) where y(+) is the observation » Will now be

expressed in a form similar to (4). For this purpose, let (2..6) be Cefined with

" pespect to the orthonormal system {%}. For each t, 0 < t < T, define the operators

N

A (t), mapping W into £2 by:

Alt)x = a; a = A‘t [4’:;(0)" x(oi]d& LR : R (2‘..7)
R(E) = AC) A(ti". B '- : (2.8)
Then the w—blm iieri\;ative of the reasure induced by the process y(+) over

(o,t] gi..th respect to Gauss measure on W(t) is given by:

’
’

. . A




- -

£t ) f Exp - 1/2 {[R(Y) £,8] - 2 [z, ACDw]} dy_ (2.9)
£ v
Note that (T) = L. Let Pn denote the projection operator corresponding to the

first n basis functions {¢l}, i=1,...n. Then we define

2Ce) = Lim ELz|aCt) P_y] (2.10)
n

As shown in [3], we have (Bayes Formula) that

j; z Exp - 1/2 {[R(D)Z,2] - 2 [z, Atty]} du,

) = £ (2.11)

_/;2 Exp - 1/2 {[R(t)z5,z] - 2 [z, A(t)yl} cluC

Note that, by Schwartz Inequality

2 j; lzl1? Exp - 172 {[R(DE,2] - 2 [g, ACt)yl} du
Hzew]| < 2 ®

f Exp - 1/2 {[R(D)z,z] - 2 [z, ACt)yl} du
€, | z

S, el s - 172 ] R - a2 e
2

2
Lz Exp - 1/2 || R(t)g - A(t?y“ du,

<ec E[HC||2] Exp + 1/2 (|| atdy]] + 2, 0<e, k<w (2.12)
. '\‘
It should be noted that such an estimate is not available in the Wiener process

version. Moreover we shall show that (2.9) ismact:ually absolutély continuous in t

2
in (0,T). Then

with an L. -derivative. Let ¢(t) be infinitely differentiable with campact support

T i
_[ [£Ct,0) ¢'(D)Idt

T i
= f f (Exp - 1/2 {[R(t)Z,z] - 2 [g, A(t)wl} ¢'(t)at]} du
L, % . ¢

4 - -




<, ) e 2 .y o : '
; = fz_ (fo - /2 ||:}i¢i(t)l:i|| + [§¢i(t)ci, m(t)]) (pr - 1/2 ([R(t)z,Z]

2

= < -2 [z, ACt)al} ¢(t)dt) o, (2.13)

where we note that both

(-~} > 2 . P -
l'i¢i(t)cill and F§¢i(t)§i, w(t)]

" are in L2 [0,T] for each z in 22.' Hence tha darivative is (defined ae. 0 <t <T):

[ 5l [5o, (00z, |7 + [36. (0., o)) B - 1/2 {[RO)Z,2] - 2 [Z, Aal} dy
2 "3 e LAKMAIES i I . : S e z

we shali next prove that

g (D) = Do (D) 0 <tLT
1

converges in the norm of V. But this is ims=diate from the fact that, a'laJ ogous to -

(2.12): |
2 - 2. . 12 ' '
[egg¢ | ° < ELl26;¢t)5, |71 Exp + 172 [[att)y[[®  ae. 0 <t<T
; e 7 R : .
let :

s(t) z¢ (t); €Ly,

/\ A

Jf Exp - 1/2 {[R()g,2] - 2 [g, A(t)y]} du
2
Then from (2.13) we can write:

|z¢i(t);i||2_3xp - 172 {{rR(t)C,z] - 2 [g, ACt)yl} du,

o . A : A
S log f(t, y) = - 12.(][S0] |2 - 2 [3(0), yten + [Iso])? - TESR!

and hence finally, for the log likelihood finctianal:

Log f(y)‘




4 ) S
= w }/2 [}g ||s(§)|[2dt - 2 .]g [S(t), y(t)ldc
3 ,//h\\\\\y
+f :
0

A
[ |s|]” - ||S(t)||2] at} (2.13)

we note that the third term can also be expressed as

A
limit E[][s(t) - S(t)[l2.

n’e

A(t)Pny] A (2.14)

The formula (2.13) differs from the Wiener procéss version in the appeare;nce of tha;

third te.rm, in the case where S(t) is Gaus51an we know that (2.14) I'Edllx__o to
E[lls(t) - s(t)ll ]

which is then also J.ndepend_nt of the obser'vatlon y( ); see [3] Nc;ute fhat (2.14)

can be large in the case where the noise level is 1arge. Fortula (2 13) was der';.ved

in [3] for a seemingly less general case by a diffe;rent method. Finally we remark |

that (2.13) is consistent with the 'circle differential' formalism of Ito [4].
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